Физиологическая и биологическая акустика

Физиологическая акустика исследует возможности органов слуха, их устройство и действие. Она изучает образование звуков органами речи и восприятие звуков органами слуха, а также вопросы анализа и синтеза речи. Создание систем; способных анализировать человеческую речь - важный этап на пути проектирования машин, в особенности роботовманипуляторов и электронновычислительных машин, послушным устным распоряжениям оператора. Аппарат для синтеза речи может дать большой экономический эффект. Если по международным телефонным каналам, передавать не сами речевые сигналы, а коды, полученные в результате их анализа, а на выходе линий синтезировать речь, потому же каналу можно передавать несколько раз больше информации. Правда, абонент не услышит настоящего голоса собеседника, но словато будут те же, что были сказаны в микрофон. Конечно, это не совсем подходит для семейных разговоров, но удобно для деловых бесед, а именно онито и перегружают каналы связи.

Биологическая акустика рассматривает вопросы звукового и ультразвукового общения животных и изучает механизм локации, которым они пользуются, исследует так же проблемы шумов, вибрации и борьбы сними за оздоровление окружающей среды.

Искажения звуков и акустические системы

Легенды о нерегистрируемых никакими приборами специфических цифровых искажениях, убивающих звук, столь же абсурдны, как и телепатия или "транзисторный" звук. Как ни странно, в среде аудиофилов до сих пор ходит байка о некоем "бездуховном" начале в транзисторных усилителях (в отличие от ламповых) и "транзисторных" искажениях, не регистрируемых измерительными приборами. Однако еще в конце семидесятых годов это явление было всесторонне исследовано и подробно объяснено в многочисленных статьях, в том числе и в общедоступном радиолюбительском журнале "Радио".

Сущность "транзисторного" звука заключается в различной скорости спада амплитуды гармоник нелинейных искажений и весьма малом относительном количестве четных гармоник у транзисторных усилителей. Для ламповых усилителей характерно экспоненциальное (гораздо более быстрое), а для транзисторных усилителей обратно пропорциональное (медленное) убывание амплитуд гармоник с ростом частоты. При этом в ламповых усилителях наблюдается психоакустическое явление (кстати, положенное в основу стандарта звуковой компрессии MPEG) маскирования несколькими первыми гармониками почти всех гармоник с большей частотой.

Таким образом, субъективно к сигналу в ламповом усилителе добавляется всего несколько первых четных и нечетных гармоник, причем их уровень должен быть довольно значительным. Обычно ламповый усилитель класса hi-end имеет коэффициент нелинейных искажений от 0,5% до 3,0% (например, усилитель "Первый" за 900 долларов, упомянутый в обзоре hi-end-усилителей в журнале "Салон Audio-Video", #6, стр 61).

Следует отметить, что по тому же принципу работают студийные эффект-процессоры обработки звука - эксайтеры. В некотором роде ламповый усилитель и есть эксайтер. Именно поэтому ламповые усилители с очень малыми нелинейными искажениями не пользуются популярностью в среде аудиофилов, характеризующих их звук как отстраненный, неэмоциональный, не добавляющий яркости сигналу, близкий к звуку транзисторного усилителя с очень малыми нелинейными искажениями. В транзисторных усилителях эффект маскирования проявляется значительно слабее, благодаря чему эффект эксайтинга выливается в добавление звуковой "грязи" и "песка".

Поэтому для получения звучания, хотя бы немного приближающегося к "ламповому", требуется на порядок уменьшить коэффициент нелинейных искажений. Это сложная техническая задача, и ее решение современными методами не всегда экономически оправданно. Проще говоря, ламповый усилитель, произведенный в Юго-Восточной Азии, может стоить значительно дешевле транзисторного hi-end-усилителя американского или европейского производства при субъективно одинаковом качестве звука. Что на самом деле и привело к кризису и разорению в начале 1998 года многих небольших американских фирм, работавших на рынке hi-end (см. журнал "Class A", март 1998). Для дешевых АЦП и ЦАП характерно отсутствие уменьшения амплитуд гармоник с ростом частоты.

Проведенные измерения на звуковых картах в ценовом диапазоне от 10 до 60 долларов показали, что для этих карт все гармоники вплоть до частоты дискретизации, деленной на два, могут иметь одинаковую амплитуду. Это очень тяжелая с точки зрения психоакустики ситуация. Такие АЦП/ЦАП, несмотря на довольно низкий коэффициент гармоник (обычно 0,02-0,04%), имеют как бы утрированное транзисторное звучание и очень хорошо "убивают" звук. В более дорогих моделях АЦП/ЦАП, где спад амплитуд гармоник подчиняется обратно пропорциональному закону, звук имеет уже обычную "транзисторную" окраску.

Однако сейчас появились 22-24-битные АЦП/ЦАП производства фирмы Analog Devices с очень низким (до 0,002%) коэффициентом гармоник. Они, например, используются в цифровом процессоре эффектов Boss GX700, имеющем, по отзывам многих знаменитых западных музыкантов, даже более "ламповое" звучание, чем многие истинно ламповые hi-fi-усилители. К сожалению, в продаже почему-то до сих пор нет дешевых массовых звуковых карт на основе этих последних наиболее совершенных и недорогих (всего 75 долларов) моделей АЦП от фирмы Analog Devices. Интересно, что в Петербурге сразу несколько небольших фирм предлагают заказные многоканальные студийные оцифровщики на основе этих АЦП.